Modelling sequential protein folding under kinetic control

نویسندگان

  • Fabien P. E. Huard
  • Charlotte M. Deane
  • Graham R. Wood
چکیده

MOTIVATION This study presents a novel investigation of the effect of kinetic control on cotranslational protein folding. We demonstrate the effect using simple HP lattice models and show that the cotranslational folding of proteins under kinetic control has a significant impact on the final conformation. Differences arise if nature is not capable of pushing a partially folded protein back over a large energy barrier. For this reason we argue that such constraints should be incorporated into structure prediction techniques. We introduce a finite surmountable energy barrier which allows partially formed chains to partly unfold, and permits us to enumerate exhaustively all energy pathways. RESULTS We compare the ground states obtained sequentially with the global ground states of designing sequences (those with a unique global ground state). We find that the sequential ground states become less numerous and more compact as the surmountable energy barrier increases. We also introduce a probabilistic model to describe the distribution of final folds and allow partial settling to the Boltzmann distribution of states at each stage. As a result, conformations with the highest probability of final occurrence are not necessarily the ones of lowest energy. AVAILABILITY Software available on request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nature of protein folding pathways: the classical versus the new view.

Pulsed hydrogen exchange and other studies of the kinetic refolding pathways of several small proteins have established that folding intermediates with native-like secondary structures are well populated, but these studies have also shown that the folding kinetics are not well synchronized. Older studies of the kinetics of formation of the native protein, monitored by optical probes, indicate t...

متن کامل

Protein folding and misfolding: mechanism and principles.

Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to det...

متن کامل

Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves s...

متن کامل

Protein folding: the stepwise assembly of foldon units.

Equilibrium and kinetic hydrogen exchange experiments show that cytochrome c is composed of five foldon units that continually unfold and refold even under native conditions. Folding proceeds by the stepwise assembly of the foldon units rather than one amino acid at a time. The folding pathway is determined by a sequential stabilization process; previously formed foldons guide and stabilize sub...

متن کامل

Modelling RNA folding under mechanical tension.

We investigate the thermodynamics and kinetics of RNA unfolding and refolding under mechanical tension. The hierarchical nature of RNA structure and the existence of thermodynamic parameters for base pair formation based on nearest-neighbour interactions allows modelling of sequence-dependent folding dynamics for any secondary structure. We calculate experimental observables such as the transit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 14  شماره 

صفحات  -

تاریخ انتشار 2006